Plasma Cutters

£570.00 inc VAT £475.00 ex VAT
£680.40 inc VAT £567.00 ex VAT
£1,545.60 inc VAT £1,288.00 ex VAT
£2,220.00 inc VAT £1,850.00 ex VAT
£2,388.00 inc VAT £1,990.00 ex VAT

Guidance and advice on purchasing a Plasma Cutter

A Plasma Cutter is the solution for you if:

  • You need a cutting tool for occasional repair and maintenance work
  • You have recently embarked on a new project that requires higher cutting volumes
  • Are looking for a new alternative to your current mechanical saw

All of these scenarios provide great reasons to investigate plasma cutting. With the cost of machines on the decline, smaller-sized, portable machines flooding the market and technology offering increased benefits and easier usage - it’s time to take a serious look at plasma for your cutting applications. The benefits of plasma cutting include ease of use, higher quality cuts and faster travel speeds.

What is Plasma Cutting Technology?

In simplest terms, plasma cutting is a process that uses a high velocity jet of ionized gas that is delivered from a constricting orifice. The high velocity ionized gas, that is, the plasma, conducts electricity from the torch of the plasma cutter to the work piece. The plasma heats the work piece, melting the material. The high velocity stream of ionized gas mechanically blows the molten metal away, severing the material.

How does Plasma Cutting compare to Oxy/Fuel cutting?

Plasma cutting can be performed on any type of conductive metal - mild steel, aluminium and stainless are some examples. With mild steel, operators will experience faster, thicker cuts than with alloys.
Oxy/Fuel cuts by burning, or oxidizing, the metal it is severing. It is therefore limited to steel and other ferrous metals which support the oxidizing process. Metals like aluminium and stainless steel form an oxide that inhibits further oxidization, making conventional oxy/fuel cutting impossible. Plasma cutting, however, does not rely on oxidation to work, and thus it can cut aluminium, stainless and any other conductive material.
While different gasses can be used for plasma cutting, most people today use compressed air for the plasma gas. In most shops, compressed air is readily available, and thus plasma does not require fuel gas and compressed oxygen for operation.
Plasma cutting is typically easier for the novice to master, and on thinner materials, plasma cutting is much faster than oxy/fuel cutting. However, for heavy sections of steel (1 inch and greater), oxy/fuel is still preferred since oxy/fuel is typically faster and, for heavier plate applications, very high capacity power supplies are required for plasma cutting applications.

What can I use a Plasma Cutter for?

Plasma cutting is ideal for cutting steel and non-ferrous material below 1 inch thick. Oxy/fuel cutting requires that the operator carefully control the cutting speed so as to maintain the oxidizing process. Plasma is more forgiving in this regard. Plasma cutting really shines in some niche applications, such as cutting expanded metal, something that is nearly impossible with oxy/fuel. And, compared to mechanical mean of cutting, plasma cutting is typically much faster, and can easily make non-linear cuts.

What are the limitations to Plasma Cutting?

The plasma cutting machines are typically more expensive than oxyacetylene, and also, oxyacetylene does not require access to electrical power or compressed air which may make it a more convenient method for some users.

When is Oxy/Fuel superior?

Oxy/fuel can cut thicker sections (>1 inch) of steel more quickly than a plasma cutter.

What to look for when purchasing a Plasma Cutter Machine:

Once you have determined plasma cutting is the right process for you, look at the following factors when making a buying decision.

1. Determine the Thickness of the Metal that you will most frequently cut:
One of the first factors you need to determine is the thickness of metal most frequently cut. Most plasma cutting power sources are rated on their cutting ability and amperage. Therefore, if you most often cut ¼” thick material, you should consider a lower amperage plasma cutter. If you most frequently cut metal that is ½” in thickness look for a higher amperage machine. Even though a smaller machine may be able to cut through a given thickness of metal, it may not produce a quality cut. Instead, you may get a sever cut which barely makes it through the plate and leaves behind dross or slag. Every unit has an optimal range of thickness - make sure it matches up with what you need. In general, a ¼” machine has approximately 25 amps of output, a 1/2” machine has a 50-60 amp output while a ¾” - 1” machine has 80 amps output.

2. Select your Optimal Cutting Speed- Do you perform most of your Cutting in a Production Environment or in an Atmosphere where Cutting Speed isn’t as critical?
When buying a plasma cutter, the manufacturer should provide cutting speeds for all thickness of metal measured in IPM (inches per minute). If the metal you cut most frequently is ¼”, a machine that offers higher amperages will be able to cut through the metal much faster than one rated at lower amperage, although both will do the job. For production cutting, a good rule of thumb is to choose a machine, which can handle approximately twice your normal cutting thickness. For example, to perform long, fast, quality production cuts on ¼” steel choose a 1/2” class (60 amp) machine. If you are performing long, time-consuming cuts or are cutting in an automated set-up, be sure to check into the machine’s duty cycle. Duty cycle is simply the time you can continuously cut before the machine or torch will overheat and require cooling. Duty cycle is rated as a percentage of a ten-minute period. For example, a 60 percent duty cycle at 50 amps means you can cut with 50 amps output power continuously for six minutes out of a 10-minute period. The higher the duty cycle, the longer you can cut without taking a break.

3. Can the Machine offer an alternative to High Frequency Starting?
Most plasma cutters have a pilot arc that utilizes high frequency to conduct electricity through the air. However, high frequency can interfere with computers or office equipment that may be in use in the area. Thus, starting methods that eliminate the potential problems associated with high frequency starting circuits may be advantageous. The lift arc method features a DC+ nozzle with a DC- electrode inside. Initially, the nozzle and the electrode physically touch. When the trigger is pulled, current flows between the electrode and the nozzle. Next, the electrode pulls away from the nozzle and a pilot arc is established. The transfer from pilot to cutting arc occurs when the pilot arc is brought close to the work piece. This transfer is caused by the electric potential from nozzle to work.

4. Compare Consumable Cost versus Consumable Life
Plasma cutting torches have a variety of wear items that require replacement, commonly called consumables. Look for a manufacturer that offers a machine with the fewest number of consumable parts. A smaller number of consumables mean less to replace and more cost savings. Look in the manufacturer’s specifications for how long a consumable will last - but be sure when comparing one machine against another that you are comparing the same data. Some manufacturers will rate consumables by number of cuts, while others will use the number of starts as the measurement standard.

5. Test the Machine and examine Cut Quality
Make test cuts on a number of machines, traveling at the same rate of speed on the same thickness of material to see which machine offers the best quality. As you compare cuts, examine the plate for dross on the bottom side and see if the kerf (the gap left by cut) angle is perpendicular or angular. Look for a plasma cutter that offers a tight, focused arc. Max-Arc consumables are specially designed to concentrate the plasma swirl, offering a tighter arc and concentrating more cutting power on the work piece. Another test to perform is to lift the plasma torch up from the plate while cutting. See how far you can move the torch away from the work piece and still maintain an arc. A longer arc means more volts and the ability to cut through thicker plate.

6. Pilot to Cut and Cut to Pilot transfers Check
The transfer from pilot arc to cutting arc occurs when the pilot arc is brought close to the work piece. A voltage potential from nozzle to work is mechanism for this transfer. Traditionally, a large resistor in the pilot arc current path created this voltage potential. This voltage potential directly affects the height at which the arc can transfer. After the pilot arc transfers to work a switch (relay or transistor) is used to open the current path. Look for a machine that provides a quick, positive transfer from pilot to cutting at a large transfer height. These machines will be more forgiving to the operator and will better support gouging. A good way to test transfer characteristics is by cutting expanded metal or gratings. In these instances, the machine will be required to quickly transfer from pilot to cut and back to pilot very quickly. To get around this, they may recommend you cut expanded metal using only the pilot current.

7. Check the Machine’s Working Visibility
As you are working on an application, you want to be able to see what you are cutting, especially when tracing a pattern. Visibility is facilitated by the geometry of the torch - a smaller, less bulky torch will enable you to better see where you are cutting, as will an extended nozzle.

8. Look for the Portability Factor
Many consumers use their plasma cutter for a variety of cutting applications and need to move the machine around a plant, job site or even from site to site. Having a lightweight, portable unit and a means of transportation for that unit - such as a valet style undercarriage or shoulder strap - make all the difference. Additionally, if floor space in a work area is limited, having a machine with a small footprint is valuable.

Also, you will want a machine that offers storage for the work cable, torch and consumables. Built-in storage drastically improves portability since these items will not drag on the ground or get lost during machine transport.

9. Determine the Ruggedness of the Machine
For today’s hard job site environments, look for a machine that offers durability and has protected controls. For example, fittings and torch connections that are protected will wear better than those that aren’t. Some machines offer a protective cage around the air filter and other integral parts of the machine. These filters are an important feature since they ensure oil is removed from the compressed air. Oil can cause arcing and reducing cutting performance. Protection of these filters is important as they ensure oil and water, which reduces cutting performance, is removed from the compressed air.

10. Find out if the Machine is Easy to operate and feels Comfortable
Look for a plasma cutter that has a big, easy-to-read control panel that is user-friendly. Such a panel allows someone who does not normally use a plasma cutter to be able to pick it up and use it. In addition, a machine with procedural information clearly printed on the unit will help with set-up and troubleshooting. How does the torch feel in your hand? You want something that has good ergonomics and feels comfortable.

11. Look for Safety Features
Look for a machine that offers a true Nozzle-in-Place safety sensor.
With such a feature, the plasma cutter will not start an arc unless the nozzle is in place. Some safety systems can be fooled into thinking the nozzle is in place (i.e. shield cup sensing), even when it is not. If the output is turned on, the operator will be exposed to 300 VDC, a very unsafe condition. This cannot happen with the Max-Arc Nozzle-in-Place safety sensor. Look for a machine that provides a pre-flow sequence. This feature provides an advanced warning to the use before the arc initiates. In addition, look for a machine which provides a three-second pre-flow safety which gives users advanced warning to make sure all body parts are clear of the nozzle before the arc initiates.

About AES Plasma Cutters

AES offer the largest range of plasma cutters for sale online in the UK. We offer quality brands of plasma cutters at wholesale prices- If you are looking to invest in a Plasma Cutter it is critical you get the right tool for the job, so please contact us if you have any concerns or questions.

© 2018 AES Industrial Supplies Limited | Powered by Shopfront

Company number: 07988136 Registered Office: Olympic House Collett, Southmead Park, Didcot, Oxon, England, OX11 7WB

We have placed cookies on your device to help make this website better.